
JOB MARKET TREND ANALYSIS
Data Mining CS-5593-995 | Fall 2025

Venu Sirisanagandla​
 Dept. of Comp. Sci.​

 University of Oklahoma​
 Oklahoma, USA​

Venu.Sirisanagandla-1@ou.edu

Sri Sairam Pothuri​
 Dept. of Comp. Sci.​

 University of Oklahoma​
 Oklahoma, USA​

 Sri.Sai.Ram.Pothuri-1@ou.edu

Natalie Hill​
 Dept. of Comp. Sci.​

 University of Oklahoma​
 Oklahoma, USA​

 Natalie.a.hill-1@ou.edu

ABSTRACT
Our project aims to provide a clear understanding of job
market trends using data mining algorithms. By analyzing
the historical data provided by Kaggle, we explore job
postings across different industries to find emerging trends,
segment the market, classify roles based on skills and
qualifications, forecast salary trends, and detect outliers that
highlight niche roles or market gaps.
To achieve these goals, we are using several algorithms, each
designed for a specific task. K-Nearest Neighbors (KNN) helps
classify job postings by experience level, job title, and salary,
allowing job seekers to find roles that suit their profiles. K-Means
clustering groups job postings by attributes like salary, company
size, and required experience, helping us find patterns in the job
market. The ARIMA (AutoRegressive Integrated Moving
Average) model is used to predict salary trends for different roles
and experience levels, providing insights into future job market
needs. We also use the Interquartile Range (IQR) method to detect
outliers, highlighting unusual or niche job postings that could
offer hidden opportunities.
Our approach brings these algorithms together in a user-friendly
interface developed with React.js and Flask API and offering data
visualizations tools like pie charts, line graphs, and box plots also.
We have successfully completed salary trend analysis, job
experience level classification, clustering. The final product
allows users to explore job market trends interactively, download
the results, and align their strategies based on real-time
interactivity. This combination of algorithms and practical tools
ensures our project is useful for both job seekers and employers,
helping them make informed decisions in a rapidly changing job
market.

KEYWORDS
KNN classification, clustering, time-series analysis, salary
forecasting,

1 INTRODUCTION

In today's rapidly evolving economy, understanding job
market trends is essential for both job seekers and
recruiters. Job seekers need insights into the skills and
qualifications that are in high demand and know about the
future salary trends in a particular field, while recruiters
need the key factors to look into throughout the interview
process. Our project, "Job Market Trend Analysis"
addresses these needs by leveraging advanced data mining
techniques to analyze job postings.
Our project focuses on providing in-depth insights into the
job market using a mix of machine learning techniques. We
classify experience level for a job role, track emerging
trends, segment the market and forecast salary patterns. By
analyzing historical job posting data, we assist job seekers
in adapting their skills to meet current and future market
demands while also helping recruiters adjust their
recruitment strategies accordingly.
The rest of this report will discuss the related work in this
field, our methodology, and the implementation details of
our approach. We will also present the results obtained from
applying our algorithms, followed by a discussion of the
conclusions and future work. Our goal is to provide
actionable insights that make navigating the job market
easier and more strategic for all stakeholders involved.

2 RELATED WORK

A significant body of research has focused on job market
trend analysis using data mining and machine learning
techniques, particularly clustering, salary forecasting, and
job role classification. Studies like Xie et al. (2016) applied
natural language processing (NLP) to classify job roles and
identify relevant skills, while Liao et al. (2019) used ARIMA
models for salary prediction. However, many of these
approaches rely on static datasets, often limited to specific
industries or regions, and do not integrate multiple analytical
techniques. For example, clustering methods like K-Means
segment job postings by attributes like salary and

Data Mining CS-5593-995 Fall 2025

experience but generally fail to include salary forecasting or
outlier detection, which leaves gaps in understanding job
market dynamics. Additionally, existing tools such as
Glassdoor and LinkedIn provide salary data but typically
lack interactivity or advanced analysis features, limiting their
usefulness for deeper market insights.
Our project advances the field by offering a more
comprehensive and integrated solution for analyzing job
market trends. We combine several data mining
techniques—including K-Nearest Neighbors (KNN) for job
role classification, K-Means for clustering, ARIMA for salary
forecasting, and Interquartile Range (IQR) for outlier
detection—into a cohesive framework that provides a
multi-dimensional view of the job market. This approach
allows us to classify job postings, segment the market,
predict salary trends, and identify niche roles with greater
depth and accuracy. Additionally, our application includes
powerful data visualization tools, such as pie charts, line
graphs, and box plots, to help users interpret the results
interactively. The interactive interface enhances user
experience by allowing customization of analysis based on
specific criteria such as industry or experience level. While
we rely on historical data from platforms like Kaggle, rather
than real-time data, our application’s combination of
advanced algorithms and visualizations provides actionable
insights for both job seekers and employers, delivering a
more robust and user-friendly tool compared to existing
platforms.

3 PROPOSED WORK AND RESULTS

3.1 Application Description

The “Job Market Trend Analysis” application uses data
mining and machine learning techniques to provide
actionable insights into the evolving job market, benefiting
both job seekers and recruiters. By analyzing historical job
posting data from sources like Kaggle, the application
employs algorithms such as K-Nearest Neighbors (KNN),
K-Means clustering and ARIMA for the overall analysis of
the job market. With an intuitive and responsive React.js
interface, users can interactively explore, and filter job data
based on criteria like industry, experience level, and salary,
visualizing the results through dynamic charts such as pie
charts, line graphs, and box plots. The application’s
backend, powered by Flask API, processes user inputs,
applies the machine learning models, and delivers
comprehensive, downloadable reports. This combination of
advanced analytics and interactive visualizations helps job

seekers align their skills with market demands and allows
recruiters to refine hiring strategies, making the application
a valuable tool in navigating the competitive job market.

3.2 Dataset

The project uses one primary dataset, salaries.csv, which
contains information about job salaries across various roles,
industries, and geographic regions. The dataset is about
12.95MB in size which includes 29,562 records, each
representing a unique job detail. The dataset has 11
attributes that capture details such as job titles, experience
levels, salary information, company size, remote ration,
work year and so on.

3.3 System Architecture

The system architecture of the job market trend analysis
application is structured into four primary layers: the User
Interface (React.js), Backend (Flask API), Machine Learning
Models, and Data Storage. Users interact with the system
through the React.js frontend, where they provide inputs
and view results via interactive data visualizations. These
inputs are processed by the Flask API, which
communicates with various machine learning models,
including K-Nearest Neighbors (KNN), K-Means for
clustering and ARIMA Time-Series for salary forecasting.
The historical data is stored in the server. Initially the
models are well trained with the data and saved so, that
they need not go through the entire pre-processing and
building phase of model for every request.

Figure 1: Job trend analysis system architecture

3.4 Algorithms

3.4.1 KNN classification

3.4.1.1 Introduction to KNN

2

https://www.kaggle.com/datasets/lorenzovzquez/data-jobs-salaries?select=salaries.csv

Data Mining CS-5593-995 Fall 2025

The K-Nearest Neighbors (KNN) algorithm is a simple, yet
powerful machine learning technique used for classification
tasks. The basic idea behind KNN is that it assigns a label
based on the majority class (in classification) of its k nearest
neighbors in the feature space. It makes predictions by
calculating the distance between the data point to be
predicted and all the points in the training dataset.
For this project, we use KNN to predict the experience level
of employees based on several features like job title,
employment type, salary, employee residence, and remote
ratio. This way, based on these parameters a job seeker
can understand on what kind of experience level role jobs
he/she needs to apply.

3.4.1.1 Euclidean Distance

The core of the KNN algorithm involves calculating the
Euclidean distance between the data point. The data point
with more neighbors within give distance is labeled same as
the group label. The formula for Euclidean distance
between two points x and y is:

3.4.1.1 Justification for feature selection

The selected features for this KNN classification task — job
title, employment type, salary, employee residence, remote
ratio, and company size — are directly relevant to predicting
the experience level of employees. Job title serves as a
strong indicator of experience level, with titles like "Junior"
or "Senior" reflecting varying levels of seniority and
expertise. Similarly, employment type (e.g., full-time,
part-time) is likely correlated with experience, as full-time
roles are typically associated with more experienced
employees. Salary is another key factor, with higher salaries
often correlating with higher experience and seniority.
Additionally, employee residence can provide insight into
regional salary norms and job market competition, which
can influence an individual's experience level. Remote ratio,
or the amount of time an employee works remotely, may
also serve as an indicator of seniority, as more experienced
workers often have the flexibility to work remotely. Lastly,
company size can reflect organizational structure, where
larger companies often have more hierarchical roles
requiring greater experience.
These features were chosen based on their logical
connection to the target variable — experience level — and

their expected ability to differentiate between employees
with varying levels of seniority. Each feature provides
valuable information that can help classify employees into
different experience categories. Job title, salary, and
company size are particularly strong predictors, as they
directly relate to an employee's position and compensation,
which typically increase with experience. Meanwhile,
employment type and remote ratio are included for their
potential to reflect the flexibility and responsibility typically
associated with more experienced roles. By using these
features, we can leverage both categorical and numerical
data to build a model that effectively predicts the experience
level of employees in a variety of work settings.

3.4.1.1 Data preprocessing

As we have chosen the features like job titles, employment
type, salary in USD, and employee residence. Here's how
preprocessing is handled:

●​ Categorical Features: The categorical features like
job_title, employment_type, employee_residence,
company_size are transformed using
OneHotEncoding, which converts them into a
number format which is suitable for the KNN
algorithm.

●​ Numerical Features: Numerical features like
salary_in_usd, remote_ratio are scaled using
StandardScaler to normalize the range of the data
and prevent certain features from dominating the
distance calculations due to their larger scales.

●​ Target Variable: The target variable,
experience_level is encoded into numeric labels
using LabelEncoder for classification purpose. This
encoding transforms the categorical values like
“Junior”, “Mid”, and “Senior” into integers.

3.4.1.1 KNN algorithm

Here are detailed steps to perform the algorithm.
●​ Calculate the Euclidean distance between the test

instance and all points in the dataset.

●​ Store the distances along with their corresponding
labels in a list.

●​ Sort the list of distances in ascending order.

●​ Select the k nearest neighbors (the k value in the
sorted list).

●​ Perform a majority vote among the k neighbors to
determine the predicted label.

●​ Return the predicted label for the test instance.

3

Data Mining CS-5593-995 Fall 2025

3.4.1.1 Choosing optimal K value

To work the algorithm efficiently, we need to provide the
optimal k value. There are several ways for finding the
optimal k value. We have used Elbow Method.
The Elbow Method is a heuristic used to choose the optimal
number of neighbors (k) for the KNN algorithm. The main
idea is to plot the error rate (or MSE) for different values of k
and identify the point where the error rate starts to decrease
more slowly. This point is referred to as the elbow, and it
represents the best balance between bias and variance.

Figure 2: Training and Testing MSE vs k

Interpreting the plot: From the plot, if we notice that the test
MSE decreases rapidly for smaller values of k (e.g.,
k=1,3,5) and starts to level off around a specific k, that is the
point where the elbow occurs. From the plot, we could
observe that the elbow point occurs at when k value is 7.
So, we have chosen k=7.

3.4.1.1 K-fold cross validation

K-Fold Cross-Validation is a technique used to assess the
performance of a machine learning model by splitting the
dataset into k subsets (or folds). In our code, the data is
divided into 5 equal folds. The model is trained on 4 of
these folds and tested on the remaining fold. This process is
repeated 5 times, with each fold serving as the test set
once.
After executing the k-fold cross validation for the algorithm,
we have got ​ the average cross validation score as
around 65%. According to the historical data distribution,
the model performed decent and good enough to classify
the user data points.

Figure 3: K-fold cross validation score for KNN

3.4.2 K-Means clustering

3.4.2.1 Introduction to K-Means

K-Means is a popular and powerful technique in
unsupervised machine learning, widely used for clustering
tasks. Clustering is a process where we group similar data
points together into distinct categories or clusters, based on
their similarities. The goal of K-Means clustering is to divide
data into K clusters, where K is a number chosen by the
user, such that the data points within each cluster are as
similar as possible, and data points in different clusters are
as dissimilar as possible.

In this project, K-Means clustering was used to group
employees based on four key features: salary in USD, job
title, company location, and experience level. The goal was
to identify distinct clusters of employees with similar
characteristics, enabling a deeper understanding of
workforce dynamics.

3.4.3.2 Justification for feature selection

Before applying K-Means clustering, it's essential to
carefully select the features that will drive the clustering
process. Effective feature selection ensures that the chosen
variables contribute meaningfully to grouping the data into
distinct, interpretable clusters. In our case, the goal is to
segment employees based on job title, location, salary, and
experience level, which are the key determinants of an
employee's position, compensation, and career trajectory.

Key Considerations for Feature Selection

●​ Relevance: The features should directly contribute
to the clustering task. In this case, job title, salary,
experience, and location are highly relevant as
they define an employee’s role and position within
the company.

●​ Distinctness: Features should capture different
aspects of the data to avoid redundancy.
Correlated features may not add value to the
clustering process.

●​ Interpretability: The features should be
understandable and actionable. Using intuitive
variables like job title, salary, and location makes
the resulting clusters easier to interpret.

4

Data Mining CS-5593-995 Fall 2025

We selected job title, company location, salary in USD, and
experience level because they directly impact employees'
roles and compensation. These features are varied and
relevant for distinguishing employees, and they provide
complementary insights without redundancy.

Correlation Analysis and Heatmap: To ensure the selected
features were complementary, we analyzed their
correlations using a heatmap. Key insights include:

●​ Job Title vs. Salary: A moderate positive
correlation, with senior roles earning higher
salaries.

●​ Location vs. Salary: Moderate correlation,
indicating higher salaries in certain regions.

●​ Experience vs. Salary: Strong correlation, as more
experience leads to higher pay.

●​ Job Title vs. Location: Moderate correlation,
suggesting certain roles are more common in
specific locations.

Figure 4: Correlation Analysis of all features

Excluding the Remote Ratio: Although the remote ratio
showed weak correlation with other features, it was
excluded from the clustering process. While it indicates
work flexibility, it does not have the same direct impact on
role, compensation, or career stage as the other features.

Based on these insights, the final feature set for clustering,
job title, location, salary, and experience level capture key
dimensions of an employee’s role and career, providing a
robust basis for meaningful clusters.

3.4.3.3 Data Preprocessing

Data preprocessing is a critical step in preparing our dataset
for K-Means clustering. It ensures that the data is clean,
consistent, and ready for analysis. Below are the key
preprocessing steps we applied to the dataset:

●​ Handling Missing Data: Missing values in salary_in_usd
were filled with the median to mitigate the impact of
outliers. Missing values in job_title, company_location,
and experience_level were imputed using the mode
(most frequent value) to maintain consistency without
introducing bias.

●​ Label Encoding: Features like job_title,
company_location, and experience_level were
converted into numerical values using Label Encoding.
This is preferable over One-Hot Encoding, as One-Hot
would increase the dimensionality unnecessarily,
especially for features with many unique categories,
while Label Encoding keeps the feature space more
manageable

●​ Standardization: Since K-Means clustering is sensitive
to feature scales, we applied Standardization to ensure
that each feature has a mean of 0 and a standard
deviation of 1. This prevents features like salary and
experience level, which may have different units, from
dominating the clustering process.

3.4.3.4 Algorithm

Initialization:
●​ Randomly select k initial centroids C1, C2…., Ck ​ from

the dataset.
Step 1: Assign Data Points to Clusters (Cluster
Assignment):
●​ For each data point xi​ in the dataset, calculate the

Euclidean distance between xi and each centroid Cj​:

where m is the number of dimensions (features), and xi,d
and Cj,d​ are the d-th features of the data point xi and
centroid Cj, respectively.
●​ Assign each data point xi​ to the cluster of the nearest

centroid:
clusterAssignment(xi)=arg minj D(xi, Cj)

Step 2: Update Centroids (Centroid Recalculation):
●​ After assigning all data points to clusters, update the

centroid Cj for each cluster j by calculating the mean of
all data points assigned to that cluster:

5

Data Mining CS-5593-995 Fall 2025

Step 3: Convergence Check:
Check if the centroids have converged, i.e., if the centroids
do not change significantly between iterations. The stopping
condition is:

where ∥⋅∥2​ is the Euclidean norm (distance), and ϵ is a small
threshold value (tolerance).
Step 4: Repeat Steps 1 and 2:
●​ Repeat the assignment of data points to clusters and

the recalculation of centroids until convergence is
reached (centroids do not change or changes are
minimal).

Output:
Once convergence is reached, the final centroids and the
cluster assignments are the output of the K-Means
algorithm.

3.4.3.4 Implementation

●​ Preprocessing the data: We handle missing values by
filling salary with the median and other categorical
features (job title, location, experience level) with the
mode.

●​ Labeling encode categorical variables: Encode job title,
company location, and experience level using
LabelEncoder to convert them into numeric format.

●​ Standardizing the features: Using StandardScaler to
scale the features (salary, job title, location, and
experience) to ensure they have similar ranges and
contribute equally to the clustering.

●​ Splitting the data: Split the dataset into training (80%)
and testing (20%) sets to train the model and evaluate
its performance.

●​ Applying the K-Means algorithm: Implementing a
custom K-Means function to cluster the data into k
clusters using Euclidean distance and iteratively update
the centroids until convergence.

●​ Selecting the optimal number of clusters: Using the
Elbow Method to determine the optimal value of k by
plotting the Within-Cluster Sum of Squares (WSS) for
different values of k.

●​ Performing PCA for 2D visualization: Applying Principal
Component Analysis (PCA) to reduce the

dimensionality of the data to two components and
visualize the clusters in 2D space.

●​ Evaluating clustering quality: We use Silhouette Score
to assess the quality of the clusters and check the
consistency of the model.

●​ Summarizing each cluster: For each cluster, we
calculate and display key statistics such as average
salary, typical job title, location, and experience level to
interpret the characteristics of each cluster.

●​ Predicting cluster for new user data: For new user
input, we predict the cluster by calculating the
Euclidean distance to the centroids and plot the user
data point on the cluster plot, showing the
corresponding cluster summary.

3.4.3.5 Choosing the Optimal K

The process of choosing the optimal number of clusters, k,
is crucial to ensuring that the K-Means algorithm performs
effectively and provides meaningful segmentation of the
data. To determine the best value for k, we used the Elbow
Method, which helps in finding the point where the addition
of more clusters no longer significantly reduces the
Within-Cluster Sum of Squares (WSS). Here’s the process
in brief:
●​ Plotting the WSS: We plotted the WSS for different

values of k (ranging from 1 to 10). The WSS measures
the compactness of the clusters, indicating how tight or
spread out the clusters are. A lower WSS suggests that
the data points are closer to their centroids, resulting in
more distinct clusters.

●​ Identifying the Elbow Point: As k increases, the WSS
decreases because more clusters allow for a better fit
to the data. However, beyond a certain number of
clusters, the reduction in WSS becomes less
significant. The elbow point represents the value of k
where this decrease in WSS starts to slow down,
indicating the optimal number of clusters.

6

Data Mining CS-5593-995 Fall 2025

Figure 5: Elbow method to find optimal k for clusters

Interpreting the plot: Based on the plot, we observed that k
= 3 was the ideal choice. This value of k balances a
sufficiently low WSS with an intuitive number of clusters that
can be meaningfully interpreted. Adding more clusters did
not provide a significant improvement in cluster
compactness, making k = 3 the optimal choice for our
dataset.

3.4.3.6 Evaluation and Validation

To evaluate the performance of our K-Means clustering
model, we used the Silhouette Score and visualized the
clustering results with the PCA transformation. Below are
the plots that we obtained:

Figure 6: Clustering on training data

Figure 7: Clustering on test data using the model built by

train data

Silhouette Score: The Silhouette Score measures the
quality of clustering by calculating how similar each point is

to its own cluster compared to other clusters. A higher score
(closer to 1) indicates well-separated clusters.

●​ Training Data Silhouette Score: 0.3201
●​ Test Data Silhouette Score: 0.3262

Cluster Visualizations: The PCA transformation was applied
to both the training and test data to visualize the clusters in
a 2D space. The PCA plot for the training data (Figure 6)
clearly shows three distinct clusters, which are derived from
features like job title, salary, company location, and
experience level. The separation between the clusters in the
PCA space indicates that the features we selected for
clustering are indeed meaningful, and that the K-Means
algorithm has successfully identified distinct groups in the
data.
The PCA plot for the test data (Figure 7) shows the clusters
obtained by applying the model trained on the training data
to the test set. While we observe a slight shift in the
positions of the clusters, the general structure remains
consistent, confirming that the model can generalize well to
unseen data.

Comparison of Silhouette Scores
The Silhouette Scores for both the training and test data are
quite close (0.3201 for training and 0.3262 for test). This
consistency indicates that the clustering model is stable,
and the clusters identified during training are well-preserved
when applied to new, unseen data.

7

Data Mining CS-5593-995 Fall 2025

The slight increase in the test data score compared to the
training score (a difference of 0.0061) suggests that the
model generalizes well and performs slightly better on the
test data. This minimal difference may indicate that the test
set's inherent characteristics align well with the training set,
or that the clustering process is robust enough to handle
minor variations in the data.
Overall, the Silhouette Scores indicate that the clustering
model has performed effectively, with well-separated and
cohesive clusters in both the training and test datasets. The
clustering model can be considered reliable and capable of
generalizing to new data with similar quality.

Insights from the visualizations:
●​ Cluster 0: Employees in this group are typically lower to

mid-level employees, as indicated by lower salary and
job title encoding.

●​ Cluster 1: The second cluster seems to represent
mid-level to senior employees, with a noticeable
increase in salary and experience.

●​ Cluster 2: The third cluster likely represents high-salary,
high-experience employees, possibly in senior or
executive roles, with strong ties to specific locations.

Patterns Observed:

●​ Job Title and Salary: The positive correlation
between job title and salary is evident, with more
senior roles in clusters 1 and 2 commanding higher
salaries.

●​ Location Influence: Company location impacts
salary, with employees in high-cost regions (like
Silicon Valley) likely appearing in higher clusters,
with location showing some correlation to job title
and experience level.

●​ Experience Level: As expected, more experienced
employees appear in clusters 1 and 2, with higher
salaries and job titles associated with greater
experience.

3.4.3 ARIMA Time-Series analysis

3.4.3.1 Introduction to ARIMA

ARIMA (AutoRegressive Integrated Moving Average) is a
popular time series forecasting technique used to model
and predict future values based on historical data. ARIMA
combines three key components:

●​ AR (AutoRegressive): The model uses the
relationship between an observation and a number
of lagged observations (previous time steps).

●​ I (Integrated): The process of differencing the
series to make it stationary by removing trends or
seasonality.

●​ MA (Moving Average): The model uses the
relationship between an observation and a residual
error from a moving average model applied to
lagged observations.

The ARIMA model is defined by three parameters: p
(autoregressive order), d (degree of differencing), and q
(moving average order). These parameters control the
model’s ability to capture dependencies in the data and
make accurate predictions.
For this project, we use ARIMA time-series to forecast the
future trends of salary for a particular job title based on the
historical data. Using this, any job seeker can know the
future trends and helps in choosing the right job title.

3.4.3.2 Justification for feature selection

Choosing salary as the target variable for prediction in this
project is an intuitive decision, primarily driven by the
availability and relevance of the data. Salary is a key metric
for understanding job market trends and is widely used by
professionals, employers, and policy-makers to assess
compensation standards across industries. While other
potential parameters, such as remote ratio or experience
level or employment type, could also be considered, salary
is the most concrete and measurable indicator available in
the dataset. Additionally, salary data is often readily
accessible and is a direct reflection of the economic value
placed on different job titles, making it the most suitable
parameter for forecasting. Given the absence of a more
relevant or comprehensive alternative, salary remains the
best choice for predicting job market trends in this case.

3.4.3.3 Data preprocessing

Before applying the ARIMA model, data preprocessing is
crucial to ensure that the time series is in an appropriate
format. The key preprocessing steps involved in this model
are:

●​ Handling categorical values: The job_title column
is categorical. It is encoded into numerical values
using LabelEncoder, which assigns a unique
integer to each job title. This allows the model to

8

Data Mining CS-5593-995 Fall 2025

process the job title as numerical input, which is
required for time series forecasting.

●​ Grouping data: The dataset is grouped by
work_year (the year of salary data) and
job_title_encoded (the numerical encoding of the
job title). The average salary (salary_in_usd) is
computed for each combination of job title and
year to form a clean time series dataset.

●​ Date conversion: The work_year column, which
initially contains year information, is converted into
a datetime format. This ensures compatibility with
ARIMA, which requires time series data to have a
datetime index.

●​ Handling insufficient Data: For job titles with
insufficient data (fewer than 3 years), the ARIMA
model is not applied, as ARIMA requires a
minimum of 3 data points to model trends
accurately.

●​ Sorting data: The data is sorted by the work_year
to ensure chronological order, which is essential
for time series analysis.

3.4.3.4 Algorithm
Here are detailed steps to perform the algorithm.

●​ Collect and preprocess the time series data
(ensure stationarity through differencing if
necessary).

●​ Identify the optimal values for p, d, and q using
ACF and PACF plots or grid search.

●​ Split the data into training and testing sets using
time series cross-validation.

●​ Fit the ARIMA model on the training set using the
identified p, d, and q values.

●​ Forecast future values based on the trained model.
●​ Evaluate model performance using error metrics

like RMSE on the test set.
●​ Save the trained model for future predictions.

3.4.3.4 Choosing optimal p, d, q values
Finding the optimal p, d, and q values for an ARIMA model
involves determining the best combination of three
parameters that minimizes the error in predictions. These
parameters correspond to the following:
1.​ p: The order of the autoregressive (AR) part — the

number of lag observations in the model.
2.​ d: The degree of differencing required to make the

series stationary (i.e., removing trends).
3.​ q: The order of the moving average (MA) part — the

number of lagged forecast errors in the model.

●​ Determine d value:
A stationary time series is one whose
properties, such as mean and variance, do
not change over time. ARIMA models require
stationary data. In our application the
work_year and salary are stationary. We have
chosen the default value of d as 1.

●​ Determine p and q value using PACF and ACF
Plots:
We can determine p and q by analyzing the
AutoCorrelation Function (ACF) and Partial
AutoCorrelation Function (PACF) plots.

The ACF plot helps to determine the number of lag
observations that are correlated with the series.
For MA (Moving Average), you can determine q by
looking at where the ACF plot cuts off (the first lag
after which the ACF is close to zero).
The PACF plot helps to determine the number of
lag observations to be included in the AR
(AutoRegressive) part of the model. For AR
(AutoRegressive), you can determine p by looking
at where the PACF plot cuts off (the first lag after
which the PACF is close to zero).

Figure 4: ACF plot for determining q value

Interpreting the plot: Here we can see a significant spike at
lag 1 (and potentially lag 2), the MA (Moving Average) order
q should likely be 1 or 2. If the ACF decays quickly to zero
after a few lags, it indicates that higher-order q values. From

9

Data Mining CS-5593-995 Fall 2025

the plot we can it may not require higher q value. So, we
choose q as 1.

Figure 5: PACF plot for determining p value

Interpreting the plot: Here we can see that there’s a
significant spike at lag 1 (and possibly lag 2) and the plot
quickly drops to zero, it suggests that AR (AutoRegressive)
order p should be 1 or 2. If the PACF doesn’t drop to zero
after lag 2 and instead decays slowly, it might suggest a
higher p value. Here we need a higher p value. So we have
choose p as 5.

3.4.3.4 Validation
The validation for the ARIMA model is performed using
TimeSeriesSplit cross-validation. This approach ensures
that the model is tested on different time periods and that
the temporal order of the data is respected (i.e., no future
data is used to predict past values). The following validation
steps are used:

●​ TimeSeriesSplit: The dataset is split into multiple
training and test sets using time series
cross-validation. This is especially important for
time series data because it prevents the model
from peeking into future data.

●​ Root Mean Squared Error (RMSE): The RMSE is
used to evaluate the model’s prediction accuracy. It
measures the difference between the actual and
predicted salary values. A lower RMSE indicates
better predictive performance.

●​ K-fold cross validation: TimeSeriesSplit is used to
perform cross-validation with multiple folds. The

model is trained and validated across different
periods, and the average RMSE for each fold is
calculated. This helps ensure that the model
generalizes well to unseen data.

In our code, the data is divided into 5 equal folds. The
model is trained on 4 of these folds and tested on the
remaining fold. This process is repeated 5 times, with each
fold serving as the test set once.
After executing the k-fold cross validation for the algorithm,
we have got the average mean squared error of 12% which
gives a prediction difference of $4382 amount in the
prediction. With this result we can say that the model has
performed well and could predict the future trend salaries
appropriately.

Figure 6: K-fold cross validation score for ARIMA

3.5 User-interface

3.6 Justifications of Development Choices

3.6.1 Choice of Machine Learning Models (KNN, K-Means,
ARIMA, IQR):

The selection of K-Nearest Neighbors (KNN), K-Means
clustering, ARIMA, and Interquartile Range (IQR) was made
based on their effectiveness in solving specific tasks within
the application. KNN is used for job role classification,
where similarity-based predictions help categorize job
postings by experience level and salary. K-Means clustering
efficiently segments the job market into meaningful groups
based on features like salary, company size, and
experience level, allowing for better market segmentation.
ARIMA is chosen for its ability to predict salary trends over
time, a crucial feature for forecasting future job market
demands. IQR helps detect outliers, identifying rare or niche
job roles that may not be immediately visible through
traditional analysis, adding an element of hidden opportunity
detection.

3.6.1 Use of Flask for Backend Development:

Flask was selected as the backend framework due to its
simplicity, scalability, and flexibility. As a lightweight
micro-framework, Flask provides an ideal environment for
handling API requests and integrating machine learning
models without the overhead of larger frameworks. This

10

Data Mining CS-5593-995 Fall 2025

choice allowed us for easy deployment, faster development
cycles, and a more manageable backend structure,
ensuring that the application can scale and evolve as new
features are added.(percent of this flask in industries)

3.6.2 Choice of React.js for Frontend Development:

React.js was chosen for its ability to build dynamic,
interactive, and responsive user interfaces. The
application’s frontend relies on React’s component-based
architecture to handle complex visualizations, such as pie
charts, line graphs, and box plots, efficiently. To further
enhance the user experience, the application utilizes the
PrimeReact UI library, which provides a wide range of
pre-built, customizable components, including forms, charts,
and data tables. This library streamlines the development
process, offering responsive and visually appealing
elements that ensure a consistent user experience across
different devices (mobile, tablet and web page view). By
using PrimeReact, the application can deliver a enterprise,
user-friendly interface without the need for extensive
custom design work. (explain the demand of reactjs)

3.6.2 Choice of GitHub for Collaborative Development:

GitHub was selected as the platform for collaborative
development due to its robust version control, ease of
collaboration, and support for team-based workflows. We
have used GitHub to efficiently manage code changes, track
project progress, and collaborate seamlessly across
different stages of the application’s development. GitHub’s
branching and pull request features allow team members to
work on separate features or bug fixes independently before
merging them into the main project. With GitHub, the project
benefits from an open and transparent development
process, enhancing team productivity and collaboration.

3.7 Experiments with analysis

3.8 Screenshots of analysis

3.9 User-manual

4 CONCLUSION

The Job Market Trend Analysis application offers a
powerful, data-driven approach to understanding the
complexities of today’s job market. By combining machine
learning models with interactive visualizations, it empowers
both job seekers and employers to make informed, strategic
decisions based on trends, salary forecasts, and market

segmentation. Its ability to classify, cluster, and predict job
market dynamics with historical data provides a clear
advantage for users seeking to align their career paths with
emerging opportunities.

5 FUTURE WORK

There is a lot of scope for the future work in terms of
scalability, performance and features. Here are few future
advancements that will aim to leverage the standard of the
application.

●​ Incorporate real-time job posting data from
platforms like LinkedIn, Indeed, and Glassdoor to
enhance the application's responsiveness and
provide up-to-date insights.

●​ Explore and integrate additional machine learning
algorithms, such as Random Forests or Support
Vector Machines (SVM), to improve the accuracy
of job role classification, salary forecasting, and
market segmentation.

●​ Develop algorithms that provide personalized job
role recommendations and salary insights based
on users' experience, qualifications, and career
goals.

●​ Develop a mobile version of the application,
making it more accessible and allowing users to
track job market trends and receive alerts on the
go.

●​ Integrations with HR management and recruitment
platforms to provide real-time data for recruitment
strategies and workforce planning.

REFERENCES
[1]​ Patricia S. Abril and Robert Plant, 2007. The patent holder's dilemma:

Buy, sell, or troll? Commun. ACM 50, 1 (Jan, 2007), 36-44.
DOI: https://doi.org/10.1145/1188913.1188915.

[2]​ Sten Andler. 1979. Predicate path expressions. In Proceedings of the
6th. ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL '79). ACM Press, New York, NY, 226-236.
DOI:https://doi.org/10.1145/567752.567774

 [3]​ Ian Editor (Ed.). 2007. The title of book one (1st. ed.). The name of the
series one, Vol. 9. University of Chicago Press, Chicago.
DOI:https://doi.org/10.1007/3-540-09237-4.

[4]​ David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.).
Wiley, New York, NY..

11

https://doi.org/

